Site updated at Thursday, 03 January 2019

Health - Severe Hypertension

Blood Pressure Monitoring during Daily Life

Saturday, Dec 22 2007


Two general strategies have been employed to obtain measures of blood pressure during daily life: home monitoring and ambulatory monitoring. Home monitoring typically involves training the patient (or a family member of the patient) to operate an occluding cuff properly to obtain auscultatory measures of blood pressure on a daily basis.

In contrast, ambulatory monitoring typically employs an automated device that is programmed to measure blood pressure at periodic intervals over the course of a specified time period, typically 24 or 48 hours.

Let’s examine the costs and benefits associated with each of these approaches.

Home Blood Pressure Monitoring
Home monitoring is one fairly inexpensive strategy for obtaining auscultatory measures of blood pressure out of the clinic. Obviously, this approach relies on having a patient who possesses the manual dexterity and sensory capabilities to acquire the skill of auscultation, adhere to the physician’s instructions regarding frequency of recording, and report blood pressures honestly and accurately. For persons who are uncertain about their ability to acquire this skill, inexpensive devices that automatically inflate and deflate the occluding cuff and detect Korotkoff sounds may be used, although the accuracy of many of these instruments is questionable (Evans et al., 1989; O’Brien et al., 1990).

Validation of Home Blood Pressure Monitors
In an effort to evaluate the accuracy of automated instruments for the purposes of home blood pressure monitoring, the Consensus Conference on Self-Blood Pressure Measurement (White et al., 1999) recommended that these automated instruments be validated according to standards established by both the Association for the Advancement of Medical Instrumentation (1993) and the British Hypertension Society (O’Brien et al., 1993). In brief, these standards allow for discrepancies between blood pressures measured by an automated device and a valid reference device to average no more than +5mm Hg and possess variabilities of no more than 8mm Hg.

Additionally, these standards emphasize training persons to operate the instrument properly and assuring the regular calibration of the device. Although the application of these standards to more recent versions of automated blood pressure recording instruments has held the industry accountable for manufacturing devices that measure accurate blood pressures (Yarows and Amerena, 1999; Yarows and Brook, 2000), some legitimate concern continues to be expressed that these devices still do not measure blood pressure accurately for many individuals (Gerin et al., 2002).

For example, in one recent device validation study, Ploin et al. (2002) reported that the test device met the designated accuracy criteria, even though only slightly over half of the blood pressure determinations obtained from it met the + 5mm Hg criteria and approximately 10 percent of the SBP determinations exceeded a +15mm Hg discrepancy between methods. It would appear that at least for some hypertensive patients, automated devices developed for home use lack the degree of accuracy we have come to expect in medical devices.

In lieu of purchasing an automated device for home blood pressure monitoring, some individuals have turned to using public automated machines, now found in almost all drugstores. In general, this approach has been discouraged (Conway, 1986), because these devices are often not properly calibrated and maintained. Furthermore, taking one’s blood pressure in a public place presents the individual with a whole new set of stimuli that are typically contraindicated in standardized instructions for obtaining accurate measures of blood pressure either in the clinic or at home.

Manuck, S. B., Kasprowicz, A. L., Monroe, S. M., Larkin, K. T., and Kaplan, J. R.
Published with assistance from the foundation established in memory of Amasa Stone Mather of the Class of 1907, Yale College.

  • Abel, J. A., and Larkin, K. T. (1991). Assessment of cardiovascular reactivity across laboratory and natural settings. Journal of Psychosomatic Research, 35, 365 - 373.
  • Achmon, J., Granek, M., Golomb, M., and Hart, J. (1989). Behavioral treatment of essential hypertension: A comparison between cognitive therapy and biofeedback of heart rate. Psychosomatic Medicine, 51, 152 - 164.
  • Agras, W. S., Horne, M., and Taylor, C. B. (1982). Expectation and the blood-pressure-lowering effects of relaxation. Psychosomatic Medicine, 44, 389 - 395.
  • Agras, W. S., Taylor, C. B., Kraemer, H. C., Southam, M. A., and Schneider, J. A. (1987). Relaxation training for essential hypertension at the worksite: II. The poorly controlled hypertensive. Psychosomatic Medicine, 49, 264 - 273.
  • Aivazyan, T. A., Zaitsev, V. P., Khramelashvili, V. V., Golenov, E. V., and Kichkin, V. I. (1988). Psychophysiological interrelations and reactivity characteristics in hypertensives. Health Psychology, 7, 137 - 144.
  • al'Absi, M., and Wittmers, L. E. (2003). Enhanced adrenocortical responses to stress in hypertension-prone men and women. Annals of Behavioral Medicine, 25, 52 - 33.
  • Albright, C. L., Winkleby, M. A., Ragland, D. R., Fisher, J., and Syme, S. L. (1992). Job strain and prevalence of hypertension in a biracial population of urban bus drivers. American Journal of Public Health, 82, 984 - 989.
  • Davidyan, A. (1989). Emotional factors in essential hypertension. Psychosomatic Medicine, 55, 505 - 517.
  • Alfredsson, L., Davidyan, A., Fransson, E., de Faire, U., Hallqvist, J., Knutsson, A., et al. (2002). Job strain and major risk factors for coronary heart disease among employed males and females in a Swedish study on work, lipids, and fibrinogen. Scandinavian Journal of Work, Environment and Health, 28, 238 - 248.
Revision date: March 21, 2010
Last revised: by Dr. Karen Severson, Ph.D.

Provided by Armina Hypertension Association

Post a comment [ + Comment here + ]

There are no comments for this entry yet. [ + Comment here + ]

Your details

* Required field

Please enter the word you see in the image below:

Comments are moderated by our editors, so there may be a delay between submission and publication of your comment. Offensive or abusive comments will not be published.