Site updated at Thursday, 03 January 2019

Health - Severe Hypertension

Oscillometric Method - Methods of Blood Pressure Measurement

Saturday, Dec 22 2007


A second type of noninvasive blood pressure measurement strategy, the oscillometric method, also employs an occluding cuff. However, in contrast to the auscultatory method, which relies on detection of Korotkoff sounds, the oscillometric method operates by sensing the magnitude of oscillations caused by the blood as it begins to flow again into the limb.

Typically, very faint blood flow oscillations begin to be detected as the air pressure in the cuff coincides with SBP. As air pressure is slowly released from the occluding cuff, the amplitude of these pulsatile oscillations increases to a point and then decreases as blood flow to the limb normalizes. Although the oscillation with the greatest amplitude has been shown to correspond reliably with mean arterial pressure (Mauck et al., 1980), determinations of SBP, which are associated with a marked increase in amplitude of oscillations, and DBP, which are associated with the point at which oscillations level off, are often less accurate when compared with auscultatory measures (Fowler et al., 1991).

Therefore, while oscillometric methods tend to overestimate SBP and underestimate DBP (Maheswaran et al., 1988; Manolio et al., 1988), they can be useful for determining accurate estimates of mean arterial pressure.

Manuck, S. B., Kasprowicz, A. L., Monroe, S. M., Larkin, K. T., and Kaplan, J. R.
Published with assistance from the foundation established in memory of Amasa Stone Mather of the Class of 1907, Yale College.

  • Abel, J. A., and Larkin, K. T. (1991). Assessment of cardiovascular reactivity across laboratory and natural settings. Journal of Psychosomatic Research, 35, 365 - 373.
  • Achmon, J., Granek, M., Golomb, M., and Hart, J. (1989). Behavioral treatment of essential hypertension: A comparison between cognitive therapy and biofeedback of heart rate. Psychosomatic Medicine, 51, 152 - 164.
  • Agras, W. S., Horne, M., and Taylor, C. B. (1982). Expectation and the blood-pressure-lowering effects of relaxation. Psychosomatic Medicine, 44, 389 - 395.
  • Agras, W. S., Taylor, C. B., Kraemer, H. C., Southam, M. A., and Schneider, J. A. (1987). Relaxation training for essential hypertension at the worksite: II. The poorly controlled hypertensive. Psychosomatic Medicine, 49, 264 - 273.
  • Aivazyan, T. A., Zaitsev, V. P., Khramelashvili, V. V., Golenov, E. V., and Kichkin, V. I. (1988). Psychophysiological interrelations and reactivity characteristics in hypertensives. Health Psychology, 7, 137 - 144.
  • al'Absi, M., and Wittmers, L. E. (2003). Enhanced adrenocortical responses to stress in hypertension-prone men and women. Annals of Behavioral Medicine, 25, 52 - 33.
  • Albright, C. L., Winkleby, M. A., Ragland, D. R., Fisher, J., and Syme, S. L. (1992). Job strain and prevalence of hypertension in a biracial population of urban bus drivers. American Journal of Public Health, 82, 984 - 989.
  • Davidyan, A. (1989). Emotional factors in essential hypertension. Psychosomatic Medicine, 55, 505 - 517.
  • Alfredsson, L., Davidyan, A., Fransson, E., de Faire, U., Hallqvist, J., Knutsson, A., et al. (2002). Job strain and major risk factors for coronary heart disease among employed males and females in a Swedish study on work, lipids, and fibrinogen. Scandinavian Journal of Work, Environment and Health, 28, 238 - 248.
Revision date: March 9, 2010
Last revised: by Dr. Brain Beutler, M.S., R.D.

Provided by Armina Hypertension Association

Post a comment [ + Comment here + ]

There are no comments for this entry yet. [ + Comment here + ]

Your details

* Required field

Please enter the word you see in the image below:

Comments are moderated by our editors, so there may be a delay between submission and publication of your comment. Offensive or abusive comments will not be published.