Severe Hypertension .net

Site updated at Tuesday, 16 September 2014

Health

The Effect of the Kidney on Blood Pressure

Monday, Dec 10 2007

  

The kidneys are organs that are ultimately responsible for the amount of fluid the body retains, and thus exert a significant effect on regulating blood volume and blood pressure.

Increased blood pressure detected by the kidneys results in increased urinary excretion, and reductions in blood pressure result in lowered excretion rates, both regulating blood pressure by altering blood volume.

During the bout of exercise, however, a portion of the blood volume is absorbed into muscle and skin cells and fluid excreted via sweat glands, rather than the kidneys alone regulating body fluid.

As stated above, the kidneys also affect blood pressure through release of renin. Essentially, when the kidneys detect a drop in blood pressure, renin is released, leading to increased vasoconstriction and sodium retention that elevate blood pressure to its previous level. This renin-angiotensin-aldosterone system, then, represents an important feedback system involved in blood pressure regulation.

Suchday, S., and Larkin, K. T.
Published with assistance from the foundation established in memory of Amasa Stone Mather of the Class of 1907, Yale College.

References
  • Abel, J. A., and Larkin, K. T. (1991). Assessment of cardiovascular reactivity across laboratory and natural settings. Journal of Psychosomatic Research, 35, 365 - 373.
  • Achmon, J., Granek, M., Golomb, M., and Hart, J. (1989). Behavioral treatment of essential hypertension: A comparison between cognitive therapy and biofeedback of heart rate. Psychosomatic Medicine, 51, 152 - 164.
  • Agras, W. S., Horne, M., and Taylor, C. B. (1982). Expectation and the blood-pressure-lowering effects of relaxation. Psychosomatic Medicine, 44, 389 - 395.
  • Agras, W. S., Taylor, C. B., Kraemer, H. C., Southam, M. A., and Schneider, J. A. (1987). Relaxation training for essential hypertension at the worksite: II. The poorly controlled hypertensive. Psychosomatic Medicine, 49, 264 - 273.
  • Aivazyan, T. A., Zaitsev, V. P., Khramelashvili, V. V., Golenov, E. V., and Kichkin, V. I. (1988). Psychophysiological interrelations and reactivity characteristics in hypertensives. Health Psychology, 7, 137 - 144.
  • al'Absi, M., and Wittmers, L. E. (2003). Enhanced adrenocortical responses to stress in hypertension-prone men and women. Annals of Behavioral Medicine, 25, 52 - 33.
  • Albright, C. L., Winkleby, M. A., Ragland, D. R., Fisher, J., and Syme, S. L. (1992). Job strain and prevalence of hypertension in a biracial population of urban bus drivers. American Journal of Public Health, 82, 984 - 989.
  • Davidyan, A. (1989). Emotional factors in essential hypertension. Psychosomatic Medicine, 55, 505 - 517.
  • Alfredsson, L., Davidyan, A., Fransson, E., de Faire, U., Hallqvist, J., Knutsson, A., et al. (2002). Job strain and major risk factors for coronary heart disease among employed males and females in a Swedish study on work, lipids, and fibrinogen. Scandinavian Journal of Work, Environment and Health, 28, 238 - 248.
Revision date: March 4, 2010
Last revised: by Dr. Kristen Shed, M.D.

Provided by Armina Hypertension Association

Post a comment [ + Comment here + ]

There are no comments for this entry yet. [ + Comment here + ]




Comment
Your details

* Required field


Please enter the word you see in the image below:

Comments are moderated by our editors, so there may be a delay between submission and publication of your comment. Offensive or abusive comments will not be published.





This website is accredited by Health On the Net Foundation. Click to verify. We comply with the HONcode standard for trustworthy health information:

verify here.